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PURPOSE: Forest ecosystems, in particular forest wetlands, are very dynamic and offer many 
ecological benefits because of their complex floral and faunal assemblages. It is important to 
understand these interactions, thus improving the ability to sustain this precious resource, and as 
stewards, pass it on. In addition, response to various natural influences, such as severe weather 
events, is also a vital part of understanding ecosystem health. It is important to quantify not only 
the obvious, visible damage but also the ambiguous stress these systems have undergone as a 
result of sustained wind damage. Satellite and airborne-based remote sensing (particularly 
imagery) are well-established methods for monitoring and assessing large-scale forest damage 
and are currently used to quantify visible damage. This research establishes proof of concept 
techniques for fusing sensor data from multiple remote sensing platforms to better understand the 
requirements needed to characterize subtle damage to forest environments impacted by 
hurricanes, in this case Hurricane Katrina. These advanced techniques may provide an indication 
of such vegetation stress before becoming visibly detectable, thus essentially predicting stress-
induced mortality before it occurs. This information can be used in formulating mitigation 
practices in riparian areas and along streams to help reduce sediment intake due to erosion from 
loss of vegetation, thus improving water quality. 
 
BACKGROUND: Apart from the direct impact of tree blow-down, wind stress to foliage is a 
more subtle form of damage that could make forested vegetation more vulnerable to disease or 
pest infestation. Extensive defoliation during periods of drought or other stressful conditions 
could amplify forest stress and lead to mortality, especially in coastal areas prone to repeated 
hurricane landfall. One form of remote sensing, hyperspectral imaging (HSI), uses instruments to 
collect data in hundreds of narrow wavelength bands and is specifically used for extracting much 
more detailed information than multispectral imaging. In fact, HSI has received increasing 
attention over the past decade as a tool to assess vegetation condition and mineralogical compo-
sition. Because of the very fine spectral, spatial, and radiometric resolution, these sensors extend 
the capability of remote sensing in a variety of applications. 
 
Similarly, light detection and ranging (LiDAR) has also been used recently to extend the 
capabilities of remote sensing. LiDAR remote sensing is rapidly becoming the standard method 
for acquiring digital terrain information and producing digital elevation models. While this 
activity represents the majority of the application of airborne LiDAR data, a significant amount 
of research and commercial activity is also focused on deriving both qualitative and quantitative 
land cover information from the data. 
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In addition to airborne LiDAR systems, ground-based LiDAR (or terrestrial LiDAR), is another 
form of LiDAR imaging that can quantify structural characteristics from a horizontal 
perspective, which will greatly complement the vertical aspect of a forest canopy derived from 
the airborne LiDAR. Ground-based LiDAR will capture many portions of the forest sub-canopy 
structure (from a three-dimensional, horizontal perspective) at a much higher resolution and 
detail than airborne LiDAR. This characterization will accurately quantify the level of damage, 
although at a much smaller scale than airborne LiDAR, and provide the ability to correlate these 
quantifying metrics with early stress indicators captured by the hyperspectral imagery. This 
technology and ground-based LiDAR specifications are detailed under Experiment 3 on page 11. 
 
Remote sensing approaches can be categorized by the characteristics of the sensor, and with 
respect to bio-physical applications, typically focuses on forest canopy cover, leaf area index 
(LAI), and fraction of photosynthetically active radiation (fPAR). LiDAR data allow for the 
quantification of tree crown dimension for habitat and biomass assessments in forest environ-
ments. Hyperspectral imaging and imaging spectroscopy provide information on structural, 
biochemical, and physiological properties of canopies including fractional material cover, 
nutrient concentration, pigment expres-
sion, and fPAR (Asner et al. 2005). 
This technical note reviews the hyper-
spectral and LiDAR technologies and 
examines the concept for combining 
these data sources for bio-physical con-
dition assessment. It is anticipated that a 
better understanding of the data fusion 
concept for this utility will promote the 
technology for the stated purpose. 
 
STUDY SITE: The principal study 
area is located in the DeSoto National 
Forest near Hattiesburg, Mississippi 
(Figure 1) and includes smaller sampl-
ing areas within the northern part of the 
forest. This inland site was readily 
accessible and appeared to be a suitable 
area to assess ambiguous stress with 
moderate to slightly damaged areas and 
limited severely damaged areas. 
 
METHODS AND ANALYSIS: The 
original scope of work for this effort 
included the acquisition of hyper-
spectral imagery (Hyperion), airborne 
LiDAR, and selected locations of 
ground-based LiDAR. Individual 
statistics and band ratios were to be 
calculated on both the airborne LiDAR 

Figure 1.  Study area within the DeSoto National Forest 
near Hattiesburg, MS. Airborne LiDAR data 
(proxy) referenced later in the report are 
restricted to the coastal areas and are not 
represented on this map. 
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and Hyperion datasets. Various limitations restricted the collection of airborne LiDAR data that 
were spatially coincident with the ground-based LiDAR; therefore a proxy airborne LiDAR 
dataset south of the area of interest was used. Ideally, spatially coincident datasets could be 
utilized to grow decision tree models similar to those used by Ducic et al. (2006). To develop the 
experimental proof of concept and apply the methodology to the area of interest, other available 
resources had to be utilized. Three different experiments were conducted to demonstrate the 
potential for utilizing these datasets and develop the methodology for the stated purpose. Each 
experiment is summarized below. 
 

Experiment 1. Validate the use of hyperspectral data for discriminating various areas of 
vegetation stress in the study area post Katrina.  

Experiment 2. Evaluate the use of derived LiDAR statistics for identifying stressed areas 
using post-Katrina LiDAR data from Harrison County, Mississippi, south of 
the desired study area. 

Experiment 3. Classify three ground-based LiDAR datasets using the classification system 
derived from experiment 2 and assess the effectiveness of characterizing 
impacted areas with high-density laser mapping technology.  

 
Experiment 1: A goal of this study was to determine relationships between forest structure and 
vegetation indices. If significant relationships are found, this may provide a foundation to use the 
hyperspectral data alone to estimate forest condition. Examples of hyperspectral vegetation 
indices utilized in this study are found in Table 1 below. 
 

Table 1 
A Selection of Important Hyperspectral Vegetation Indices Used in this 
Study. 
Index Description 

NDVI Narrow-band Normalized Difference Vegetation Index (can check all possible 
two-band combinations, and determine best band combinations through 
correlation plots); Relates to fPAR and LAI. 

NDWI Normalized difference Water Index. Relates to canopy water content. 
PRI Photochemical Reflectance Index; relates to light use efficiency and 

photosynthetic capacity. 
CRI Carotenoid Reflectance Index; indicator of plant stress and adaptation to 

resource conditions. 
Red-edge  Examines indices on the derivative curve of the red-edge region of the EM 

spectrum. 

 
 
Three adjacent Hyperion scenes were acquired in the fall of 2006 over a portion of the principle 
study area in the DeSoto National Forest. An archived post-Katrina Hyperion scene acquired 
immediately after the storm, which overlapped one of the new acquisitions, was obtained. This 
scene was analyzed in a similar method but unfortunately the data suffered from significantly 
greater atmospheric effects and could not be reliably utilized in the study. 
 
Study sites (n = 17) were selected using a combination of high-resolution aerial photography and 
field assessment. Sites were chosen based on the following criteria: 1) They were within, or in 
close proximity to, the DeSoto National Forest, and 2) they could be assigned to one of the three 
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following categories, with respect to hurricane impact. These categories relate to increasing 
levels of damage.  
 

1. Slightly affected 
2. Moderately affected 
3. Severely affected  

 
Slightly affected areas are characterized by very little physical damage and exhibit only minor 
signs of impact from Katrina. Moderately affected areas are characterized by isolated incidences 
of whole-tree blowdown and perhaps a few leaning trees with slight canopy damage. Severely 
affected areas exhibit very apparent damage that is obvious to the untrained observer. It was 
expected that discrimination between the first two categories and the latter category would be 
possible in almost any dataset. The purpose of this experiment was to determine if it is possible 
to differentiate slightly impacted areas from moderately impacted areas using the hyperspectral 
dataset, since this discrimination was not always apparent to a standard observer and was very 
hard to extract from multispectral data.  
 
Each of the sites was delineated and stored as an ESRI polygon shapefile. In addition to calcu-
lating the average spectral signature for each class, a number of band indices were calculated for 
each site. The band indices were: 
 

• NDVI (Hyperion bands 45 & 33) (Figure 2) 
• NDWI (Hyperion bands 51 & 109) 
• PRI (Hyperion bands 18 & 22) 
• CRI (Hyperion bands 16 & 20)  
• Red-Edge position index (ratio of Hyperion 

bands 39 & 37)  
 
These band indices were chosen because of their 
established success in amplifying subtle changes in 
vegetation characteristics. 
 
An Analysis of Variance (ANOVA) test was performed 
to evaluate the effectiveness of each band index in 
separating the classes from each other. A box plot of 
each band index is displayed in Figure 3 along with the 
significance level of the ANOVA test. Those significant 
at the alpha 0.05 level are marked with an asterisk. The 
damage classes are labeled in plots 1 to 3, low to high. 
 
Two of the five band indices are significant, indicating that the band index successfully 
discriminates between categories for these groups. NDVI and NDWI were very close to achiev-
ing a significant result, and were still particularly good at separating two of the three damage 
categories. A discriminant analysis was conducted to determine if a combination of the indices 
would be effective in completely separating the categories from each other in feature space.  
 

Figure 2.  An NDVI image of a portion 
of the study area. 
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NDVI – Significance level = 0.07 

 
NDWI – Significance level = 0.075 

 
CRI – Significance Level = 0.024* 

  
PRI – Significance level = 0.621 

  
Red-Edge Position Ratio – Significance level = 0.01* 

Figure 3. Box plots demonstrating the ability of various hyperspectral indices to separate types of 
vegetation stress. 
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This test indicates the degree of separation present in the potential classes. It is similar in nature 
to running a reverse classification. Only those indices that were significant in the first series of 
ANOVA tests (CRI and Red-Edge Position Ratio) were included in the discriminant analysis 
function. 
 
The results of the discriminant analysis indicate that the first derived function was significant and 
successfully discriminated between the three damage categories. The weights for this function 
indicate that the red-edge position index contributed more to the solution than CRI. The first two 
functions are plotted in Figure 4. The coefficients of the first function are -0.661 for CRI and 
0.999 for red-edge position index. The correlation values of the first function to each of the input 
variables are -0.332 for CRI and 0.781 for the red-edge position index.  
 

 
Figure 4.  Plot of the first two functions of the canonical discriminant analysis. 

Figure 5 is a representation of the spectral signature of each category depicting only those bands 
that were utilized in the calculation of the indices (with the exception of PRI). There are a few 
items of interest. First, the degree of separation is significantly smaller between categories in the 
visible portion of the electromagnetic spectrum than the infrared portion. Second, the degree of 
separation between slightly affected areas and moderately affected areas in the visible portion of 
the spectrum is least apparent in the green band. This appears to indicate that even after one full 
growing season following Katrina there are differences in vegetation water content (near infrared 
differences) and chlorophyll absorption (red and blue differences) between the categories, 
despite these changes being subtle and not as visually apparent in the field.  
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Figure 5.  A plot of selected hyperspectral bands with the indices shown. 

Experiment 2: This experiment utilized airborne LiDAR data collected about one month after 
Hurricane Katrina and south of the desired area of interest. Unfortunately, the data are not 
spatially coincident with the ground-based LiDAR data and were not collected during the same 
time frame; therefore fusion of these two data types was not possible. These data were collected 
using a traditional small-footprint airborne LiDAR system. A unique method was utilized, which 
was developed to identify vegetation characteristics based on information derived exclusively 
from airborne LiDAR data. Some of the statistics calculated on the airborne LiDAR data seek to 
mimic or reconstruct a sampling of what a full waveform large-footprint LiDAR system might 
create over the same area, which is more ideal for a comprehensive vegetation condition 
assessment. In addition to evaluating the airborne LiDAR dataset alone, a portion of the derived 
LiDAR statistics were fused with spectral data in an attempt to demonstrate the sensor fusion 
proof of concept for utilization of forest vegetation condition assessment. However, suitable 
post-Katrina Hyperion data were not spatially coincident with the airborne LiDAR data; 
therefore a Landsat multispectral satellite image was used to demonstrate feasibility. 
 
The study area for this experiment is located in western Hancock County, northeast of Diamond-
head, MS. Approximately 40 sites were selected from a high-resolution photograph. These sites 
were classified into areas of light stress, moderate stress, and damaged areas. Each site was 
subsequently field verified. The categories and methodology are similar to those described in 
Experiment 1.  
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The methods in this experiment consist of con-
structing a simulated waveform to extract vege-
tation information from the airborne LiDAR 
data. Small-footprint LiDAR data collected in 
forested environments are often characterized 
by point distributions throughout the top or 
main canopy, mid-canopy, understory vegeta-
tion, and finally the terrain surface (Figure 6a). 
Rendering these points graphically yields a 
LiDAR “point cloud” that depicts the vertical 
structure from forest canopy to forest floor 
(Figure 6b). Integrating the point cloud over a 
geographic area yields a histogram that reveals 
the frequency of laser returns along the z-axis 
(Figure 6c). This histogram is similar to a wave-
form because it changes based on the vertical 
vegetation structure present within each geo-
graphic area. Extracting vegetation information 
using only small-footprint airborne LiDAR data 
is based on the assumption that a derived 
vertical histogram changes with point distribu-
tion and is dictated by the vegetation charac-
teristics. For example, a homogeneous forest 
and the terrain surface (Figure 6a) are discern-
ible as the two modes of the distribution in the 
vertical histogram. When mixed forests of 
uneven age are measured, however, the bi-
modal histogram tends to be dampened when 
compared to homogeneous forest stands. To 
characterize these distributions over small 
areas, a software program was written to ana-
lyze and display statistics generated from the 
LiDAR data. The program calculates aggregate 
statistics based on the vertical distribution of 
intercepted points within a specified polygon 
and stores the value in a shapefile attribute 
table. Initially, only four distribution descriptors 
were calculated, thus creating four additional 
attributes. These descriptors were mean, stan-
dard deviation, range, and skew. The results 
were only moderately successful. 
 
To improve the LiDAR-based method for char-
acterizing vegetation, the program was modi-
fied to describe the entire vertical distribution 
using the following approach. One point was 

Figure 6.  Histogram development representing 
the vertical distribution of LiDAR points.
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sampled at each 10th percentile of height from the minimum value. The z-value of each of these 
points above the minimum point (relative z-value) became the value for 10 new attributes in the 
output shapefile. The mathematical explanation of the process is based on Equation 1 below: 
 

Vk = Pk*10 (Zpoly) (1) 
 
where: 
 
 Vk  = value of one single attribute in the output shapefile data table 
 Pk = mathematical notation for a percentile  
 Zpoly = set of relative height values for the LiDAR points within a polygon of interest 
 
The output is a cumulative version of the vertical histogram displayed in Figure 6c. This tech-
nique was applied on the shapefile representing the damaged areas and yielded an additional 
10 attributes. These 10 attributes were then normalized using two separate techniques. The first 
normalization simply subtracted each percentile value by the height. The second normalization 
repeated this and then divided the number by the range and multiplied by 100. Thus the first 
normalization yielded numbers from 0 to the maximum height, and the second yielded a number 
between 0 and 100. Figures 7 and 8 depict the curves associated with the three damage types for 
both of these normalized LiDAR statistics. In effect, these curves represent a LiDAR-based 
signature for these damage classes.  
 
Note the differences in the curves in Figures 7 and 8. In the first normalization (Figure 7), the 
slight damage curve begins to taper off (at the 8th percentile at about 11m) and does not increase 
at the same consistent rate. This may indicate a healthier, more intact canopy structure, rather 
than bare or isolated branches sticking up above the main canopy. In the second normalization 
(Figure 8), the slight and moderate categories appear very close together, with only slight 
separation apparent in the lower percentiles. These differences could be explained by additional 
ground clutter, although the differences appear minor and are consistent with visual observations. 
 
To experiment with the fusion of airborne LiDAR data with spectral information, a Landsat 
dataset was used instead of the desired Hyperion data. The fusion was performed by conducting 
an automated decision tree analysis called the See5 routine. For an initial proof of concept study, 
the structure of the decision tree rules is often more interesting than the accuracy of the 
classification produced. The See5 algorithm is the commercial version of a software algorithm 
originally pioneered by J. Ross Quinlan (Quinlan 1993), and has been used in many multi-sensor 
projects.  
 
The decision tree that was generated by the algorithm for this study has only one branch with 
seven rules. The rules based on “L” variables are derived from the spectral data and the 
remaining three rules are based on LiDAR-derived statistical information. The P10 variable is 
the first variable in the first normalization LiDAR statistic and the S50 variable is the middle 
variable in the second normalization LiDAR statistic. Interestingly, there appear to be greater 
differences between these particular values in Figures 7 and 8. 
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Figure 7.  Percentile LiDAR Statistic (First Normalization). 

 

 
Figure 8.  Percentile LiDAR Statistic (Second Normalization). 
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Experiment 3: The final experiment utilized 
data collected from a high-density, very accurate 
Leica HDS3000 3D ground-based LiDAR 
system (Figure 9). Leica HDS (high-definition 
surveying) laser scanners use a rapid-firing, 
pulsing green (523 nm) laser (class 3R rating) 
for very detailed data acquisition. The highly 
accurate and dense point data captured by the 
terrestrial 3D laser scanner permits the develop-
ment of robust datasets for GIS modeling and 
dynamic surface characterization, visualization, 
and quantification.  
 
The scanner utilized for this study has a 360° 
horizontal by 270° vertical field of view that 
delivers positional, range, and angular (vertical 
and horizontal) single point accuracies (at 50 m 
range) of 6 mm, 4 mm, and 60 micro-radians, 
respectively. Each returned point coordinate is 
relative to the scanner’s position and has an 
aggregate expected accuracy of 6 mm (one sigma standard deviation). The pulse rate is 1000 
points/second with an optimal effective range up to 100 m that can produce a maximum point 
cloud density of 1.2 mm1. The laser also measures the intensity value of each point. The intensity 
value is a measure of the color and texture of the objects from which the laser reflects. Laser 
scanning, in general, is a rapid non-invasive form of data acquisition that is suitable for 
characterizing areas with restricted or limited access or where environmental conditions limit the 
ability to physically access the area.  
 
Experiment 3 had two components that used the ground-based LiDAR unit. One component 
assessed the ability to classify three ground-based LiDAR datasets applying the rules generated 
by the See5 algorithm implemented in Experiment 2. The second component evaluated data 
collected by the unit for the ultimate development of techniques to characterize storm-impacted 
areas. The three datasets were all located in the study area near or within the DeSoto National 
Forest. Each ground-based LiDAR dataset was processed in the same manner as the airborne 
LiDAR in experiment 2. The primary results are statistical data describing the complete 
distribution of LiDAR points. Spectral data were also derived for the area using the technique 
and dataset described in Experiment 2. 
 
The three sites selected most closely related to the three levels of damage or hurricane impact 
and thus remained consistent with previous experiments. However, the sites differed signifi-
cantly in species composition. The first site (Attix Road) can be described as a hardwood riparian 
area within a mixed pine stand (Figure 10). This site had the most physical damage with many 
wind-thrown, downed hardwood trees. Many understory trees and saplings were impacted from 
surrounding, mature trees that were uprooted. The second site (Black Creek) was categorized as 
moderately damaged but was similar to the Attix Road site in damage characteristics and 
                                                 
1 Upgraded specifications are improved at 4000 pts/sec effective up to the 300 m range. 

Figure 9.  The Leica HDS3000 (ground-based) 
3D LiDAR unit utilized for this study.
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represents a more uniform mix of hardwood and pine trees (Figure 11). The third and final site 
(Ashe Nursery) is a longleaf pine stand (Figure 12) and had the least amount of damage. Some of 
the trees were slightly damaged with some larger broken branches, but no trees were snapped or 
downed as a result of Hurricane Katrina.  
 

After calculating the statistics for each site, the dataset representative of the site was classified 
accordingly. Given the very small sample size, the utility of this experiment is still in doubt. It is 
interesting to note that although the sites differed significantly, they were correctly classified 
using the same spectral information, but were in fact a different LiDAR dataset (in this case 
ground-based). Additional experiments are needed to test the validity of this apparent pattern. 
Also, future considerations should focus on determining if more descriptive or perhaps 
quantitative measures of forest stress could be derived using similar techniques.  

 
Figure 10.  The Attix Road Site. This site is char-

acterized by mostly hardwood trees 
and exhibited the most damage 
(Severe). 

Figure 11.  The Black Creek Site. This site is 
characterized as a pine-hardwood 
mix and had some damage 
(Moderate). 

 
Figure 12.  The Ashe Nursery Site. This is a 

longleaf pine stand with mostly 
herbaceous understory and had the 
least amount of damage (Slight). 
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The other component of Experiment 3 for this proof of concept was to demonstrate the utility of 
ground-based LiDAR data to characterize or otherwise better describe compromised forest 
environments using 3D mapping technology as opposed to visual inspection or traditional field 
assessments. Documenting a site’s physical condition with LiDAR data allows for the 
development of robust quantitative descriptors as opposed to qualitative observations or time-
consuming measurements. Using ground-based LiDAR to derive forest metrics is new research 
currently in the experimental phase. Establishing the technology for this purpose will help 
promote the implementation of additional sensor fusion concepts (such as integration with 
airborne LiDAR), greatly improving the ability to identify and monitor impacted areas in need of 
mitigation. Figure 13 illustrates the amount of detail afforded by the ground-based LiDAR and 
the modeling capabilities that exist. 
 

 
Figure 13.  High-resolution laser scan of Black Creek site. True-color laser postings are spaced at 3 m 

and generated from a Leica HDS3000 with an integrated digital camera. The inset image (in 
lower left corner) illustrates modeling capabilities of LiDAR-derived, wind-blown tree trunks. 

 
Modeling forest damage characteristics will provide a quantifiable description of the compro-
mised site. These areas can be spatially correlated with the spectral areas that exhibited definite 
indications of stress. An interesting approach would be to integrate the ground-based LiDAR 
data with spatially coincident airborne LiDAR data to determine any variability in the data 
models derived from both datasets, then fuse with high-resolution hyperspectral data to establish 
the relationships on a larger scale. Due to the density of the vegetation and ground clutter at each 
site, and with increasing distance from the unit, the ability to characterize compromised areas 
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becomes limited. In these situations, it may be necessary to conduct many individual, focused 
scans of these areas as a more effective approach. However, even with the limited data available 
for this study, it appears that modeling techniques are possible and can successfully quantify 
structural components of a damaged forest utilizing ground-based LiDAR technology. Future 
work should focus on applying the techniques to forest mensuration practices such as volume-
loss estimation, canopy/branch loss, and perhaps implication to growth and yield estimates of 
areas impacted by significant storm events. 
 
CONCLUSION: Using remote sensing to detect forest ecosystem stress is based upon the idea 
that stress causes changes in the spectral response of forest vegetation. Also, since LAI can be 
affected by stress, it is an important structural parameter for quantifying energy and mass 
exchange characteristics of terrestrial ecosystems (including photosynthesis, respiration, trans-
piration, carbon and nutrient cycling, and rainfall interception). These forest characteristics and 
parameters can all be used interactively to quantify and understand the effects hurricanes have on 
forested ecosystems; fortunately, most of these metrics can be derived and interpreted using 
remotely sensed data. 
 
Based on this proof of concept using the limited data and analyses, there is evidence to suggest 
that both hyperspectral and LiDAR data can be used to successfully discriminate between cate-
gories of stressed vegetation. Even smaller stress differences were evident in the hyperspectral 
data, such as those in moderately versus slightly impacted areas. Furthermore, it was confirmed 
that techniques such as the automated decision tree analysis were applicable to this study. Even 
with a reduced sample size, the results appear portable to ground-based LiDAR systems. The 
ability to utilize these types of data, or perhaps even more ideal data sources such as full 
waveform LiDAR or high-resolution hyperspectral data, can only enhance the results and 
increase the significance of these findings.  
 
Further research will be needed to establish a definitive correlation between quantifiable, 
stressed areas on the ground using LiDAR and hyperspectral data. Once this correlation has been 
made, a standardization to identify these forest stands could be possible and may be implemented 
on a larger scale, perhaps with hyperspectral imagery alone. Development of this knowledge 
may also help establish a timeline from the onset of damage to the onset of stress symptoms and 
may ultimately help predict mortality in compromised areas. Furthermore, the techniques 
described in this proof of concept will help identify stress-related factors resulting from subse-
quent wind damage (e.g., defoliation and foliage wilt) which indicate compromised tree vigor.  
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POINTS OF CONTACT: For additional information please contact Sam S. Jackson, 
U.S. Army Engineer Research and Development Center (ERDC), Waterways Experiment 
Station, Vicksburg, MS (601-634-3317, Sam.S.Jackson@usace.army.mil) or the SWWRP 
Program Manager Dr. Steven L. Ashby (601-634-2387, Steven.L.Ashby@usace.army.mil). This 
technical note was written by Sam S. Jackson, George T. Raber, Jerry A. Griffith, and Mark R. 
Graves. This document should be cited as follows: 
 

Jackson, S. S., G. T. Raber, J. A. Griffith, and M. R. Graves. 2008. Concepts for 
sensor data fusion to detect vegetation stress and implications on ecosystem 
health following Hurricane Katrina. SWWRP Technical Notes Collection, 
ERDC/EL TN-SWWRP-08-06. Vicksburg, MS: U.S. Army Engineer Research 
and Development Center. http://el.erdc.usace.army.mil/ 
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NOTE: The contents of this technical note are not to be used for advertising, publication, or 
promotional purposes. Citation of trade names does not constitute an official endorsement or 

approval of the use of such products. 
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